This is a summary of information regarding objects below the snmpUsmMIB MIB object, which is defined within the SNMP-USER-BASED-SM-MIB MIB document as .1.3.6.1.6.3.15.
Name | Type | Access | OID | Description |
---|---|---|---|---|
1
usmStatsUnsupportedSecLevels | COUNTER | ReadOnly | .1.3.6.1.6.3.15.1.1.1 |
The total number of packets received by the SNMP engine which were dropped because they requested a securityLevel that was unknown to the SNMP engine or otherwise unavailable. |
2
usmStatsNotInTimeWindows | COUNTER | ReadOnly | .1.3.6.1.6.3.15.1.1.2 |
The total number of packets received by the SNMP engine which were dropped because they appeared outside of the authoritative SNMP engine's window. |
3
usmStatsUnknownUserNames | COUNTER | ReadOnly | .1.3.6.1.6.3.15.1.1.3 |
The total number of packets received by the SNMP engine which were dropped because they referenced a user that was not known to the SNMP engine. |
4
usmStatsUnknownEngineIDs | COUNTER | ReadOnly | .1.3.6.1.6.3.15.1.1.4 |
The total number of packets received by the SNMP engine which were dropped because they referenced an snmpEngineID that was not known to the SNMP engine. |
5
usmStatsWrongDigests | COUNTER | ReadOnly | .1.3.6.1.6.3.15.1.1.5 |
The total number of packets received by the SNMP engine which were dropped because they didn't contain the expected digest value. |
6
usmStatsDecryptionErrors | COUNTER | ReadOnly | .1.3.6.1.6.3.15.1.1.6 |
The total number of packets received by the SNMP engine which were dropped because they could not be decrypted. |
1
usmUserSpinLock |
INTEGER
Legal values: 0 .. 2147483647 TestAndIncr | ReadWrite | .1.3.6.1.6.3.15.1.2.1 |
Note: this object is based on the TestAndIncr TEXTUAL-CONVENTION. An advisory lock used to allow several cooperating Command Generator Applications to coordinate their use of facilities to alter secrets in the usmUserTable. |
Name | Type | Access | Description |
---|---|---|---|
1
usmUserEngineID |
OCTETSTR
Legal Lengths: 5 .. 32 SnmpEngineID | NoAccess |
Note: this object is based on the SnmpEngineID TEXTUAL-CONVENTION. An SNMP engine's administratively-unique identifier. In a simple agent, this value is always that agent's own snmpEngineID value. The value can also take the value of the snmpEngineID of a remote SNMP engine with which this user can communicate. |
2
usmUserName |
OCTETSTR
Legal Lengths: 1 .. 32 SnmpAdminString | NoAccess |
Note: this object is based on the SnmpAdminString TEXTUAL-CONVENTION. A human readable string representing the name of the user. This is the (User-based Security) Model dependent security ID. |
Name | Type | Access | Description |
---|---|---|---|
3
usmUserSecurityName |
OCTETSTR
Legal Lengths: 0 .. 255 SnmpAdminString | ReadOnly |
Note: this object is based on the SnmpAdminString TEXTUAL-CONVENTION. A human readable string representing the user in Security Model independent format. The default transformation of the User-based Security Model dependent security ID to the securityName and vice versa is the identity function so that the securityName is the same as the userName. |
4
usmUserCloneFrom |
OBJECTID
RowPointer | Create |
Note: this object is based on the RowPointer TEXTUAL-CONVENTION. A pointer to another conceptual row in this usmUserTable. The user in this other conceptual row is called the clone-from user. When a new user is created (i.e., a new conceptual row is instantiated in this table), the privacy and authentication parameters of the new user must be cloned from its clone-from user. These parameters are: - authentication protocol (usmUserAuthProtocol) - privacy protocol (usmUserPrivProtocol) They will be copied regardless of what the current value is. Cloning also causes the initial values of the secret authentication key (authKey) and the secret encryption key (privKey) of the new user to be set to the same values as the corresponding secrets of the clone-from user to allow the KeyChange process to occur as required during user creation. The first time an instance of this object is set by a management operation (either at or after its instantiation), the cloning process is invoked. Subsequent writes are successful but invoke no action to be taken by the receiver. The cloning process fails with an 'inconsistentName' error if the conceptual row representing the clone-from user does not exist or is not in an active state when the cloning process is invoked. When this object is read, the ZeroDotZero OID is returned. |
5
usmUserAuthProtocol |
OBJECTID
AutonomousType | Create |
Note: this object is based on the AutonomousType TEXTUAL-CONVENTION. An indication of whether messages sent on behalf of this user to/from the SNMP engine identified by usmUserEngineID, can be authenticated, and if so, the type of authentication protocol which is used. An instance of this object is created concurrently with the creation of any other object instance for the same user (i.e., as part of the processing of the set operation which creates the first object instance in the same conceptual row). If an initial set operation (i.e. at row creation time) tries to set a value for an unknown or unsupported protocol, then a 'wrongValue' error must be returned. The value will be overwritten/set when a set operation is performed on the corresponding instance of usmUserCloneFrom. Once instantiated, the value of such an instance of this object can only be changed via a set operation to the value of the usmNoAuthProtocol. If a set operation tries to change the value of an existing instance of this object to any value other than usmNoAuthProtocol, then an 'inconsistentValue' error must be returned. If a set operation tries to set the value to the usmNoAuthProtocol while the usmUserPrivProtocol value in the same row is not equal to usmNoPrivProtocol, then an 'inconsistentValue' error must be returned. That means that an SNMP command generator application must first ensure that the usmUserPrivProtocol is set to the usmNoPrivProtocol value before it can set the usmUserAuthProtocol value to usmNoAuthProtocol. |
6
usmUserAuthKeyChange |
OCTETSTR
KeyChange | Create |
Note: this object is based on the KeyChange TEXTUAL-CONVENTION. An object, which when modified, causes the secret authentication key used for messages sent on behalf of this user to/from the SNMP engine identified by usmUserEngineID, to be modified via a one-way function. The associated protocol is the usmUserAuthProtocol. The associated secret key is the user's secret authentication key (authKey). The associated hash algorithm is the algorithm used by the user's usmUserAuthProtocol. When creating a new user, it is an 'inconsistentName' error for a set operation to refer to this object unless it is previously or concurrently initialized through a set operation on the corresponding instance of usmUserCloneFrom. When the value of the corresponding usmUserAuthProtocol is usmNoAuthProtocol, then a set is successful, but effectively is a no-op. When this object is read, the zero-length (empty) string is returned. The recommended way to do a key change is as follows: 1) GET(usmUserSpinLock.0) and save in sValue. 2) generate the keyChange value based on the old (existing) secret key and the new secret key, let us call this kcValue. If you do the key change on behalf of another user: 3) SET(usmUserSpinLock.0=sValue, usmUserAuthKeyChange=kcValue usmUserPublic=randomValue) If you do the key change for yourself: 4) SET(usmUserSpinLock.0=sValue, usmUserOwnAuthKeyChange=kcValue usmUserPublic=randomValue) If you get a response with error-status of noError, then the SET succeeded and the new key is active. If you do not get a response, then you can issue a GET(usmUserPublic) and check if the value is equal to the randomValue you did send in the SET. If so, then the key change succeeded and the new key is active (probably the response got lost). If not, then the SET request probably never reached the target and so you can start over with the procedure above. |
7
usmUserOwnAuthKeyChange |
OCTETSTR
KeyChange | Create |
Note: this object is based on the KeyChange TEXTUAL-CONVENTION. Behaves exactly as usmUserAuthKeyChange, with one notable difference: in order for the set operation to succeed, the usmUserName of the operation requester must match the usmUserName that indexes the row which is targeted by this operation. In addition, the USM security model must be used for this operation. The idea here is that access to this column can be public, since it will only allow a user to change his own secret authentication key (authKey). Note that this can only be done once the row is active. When a set is received and the usmUserName of the requester is not the same as the umsUserName that indexes the row which is targeted by this operation, then a 'noAccess' error must be returned. When a set is received and the security model in use is not USM, then a 'noAccess' error must be returned. |
8
usmUserPrivProtocol |
OBJECTID
AutonomousType | Create |
Note: this object is based on the AutonomousType TEXTUAL-CONVENTION. An indication of whether messages sent on behalf of this user to/from the SNMP engine identified by usmUserEngineID, can be protected from disclosure, and if so, the type of privacy protocol which is used. An instance of this object is created concurrently with the creation of any other object instance for the same user (i.e., as part of the processing of the set operation which creates the first object instance in the same conceptual row). If an initial set operation (i.e. at row creation time) tries to set a value for an unknown or unsupported protocol, then a 'wrongValue' error must be returned. The value will be overwritten/set when a set operation is performed on the corresponding instance of usmUserCloneFrom. Once instantiated, the value of such an instance of this object can only be changed via a set operation to the value of the usmNoPrivProtocol. If a set operation tries to change the value of an existing instance of this object to any value other than usmNoPrivProtocol, then an 'inconsistentValue' error must be returned. Note that if any privacy protocol is used, then you must also use an authentication protocol. In other words, if usmUserPrivProtocol is set to anything else than usmNoPrivProtocol, then the corresponding instance of usmUserAuthProtocol cannot have a value of usmNoAuthProtocol. If it does, then an 'inconsistentValue' error must be returned. |
9
usmUserPrivKeyChange |
OCTETSTR
KeyChange | Create |
Note: this object is based on the KeyChange TEXTUAL-CONVENTION. An object, which when modified, causes the secret encryption key used for messages sent on behalf of this user to/from the SNMP engine identified by usmUserEngineID, to be modified via a one-way function. The associated protocol is the usmUserPrivProtocol. The associated secret key is the user's secret privacy key (privKey). The associated hash algorithm is the algorithm used by the user's usmUserAuthProtocol. When creating a new user, it is an 'inconsistentName' error for a set operation to refer to this object unless it is previously or concurrently initialized through a set operation on the corresponding instance of usmUserCloneFrom. When the value of the corresponding usmUserPrivProtocol is usmNoPrivProtocol, then a set is successful, but effectively is a no-op. When this object is read, the zero-length (empty) string is returned. See the description clause of usmUserAuthKeyChange for a recommended procedure to do a key change. |
10
usmUserOwnPrivKeyChange |
OCTETSTR
KeyChange | Create |
Note: this object is based on the KeyChange TEXTUAL-CONVENTION. Behaves exactly as usmUserPrivKeyChange, with one notable difference: in order for the Set operation to succeed, the usmUserName of the operation requester must match the usmUserName that indexes the row which is targeted by this operation. In addition, the USM security model must be used for this operation. The idea here is that access to this column can be public, since it will only allow a user to change his own secret privacy key (privKey). Note that this can only be done once the row is active. When a set is received and the usmUserName of the requester is not the same as the umsUserName that indexes the row which is targeted by this operation, then a 'noAccess' error must be returned. When a set is received and the security model in use is not USM, then a 'noAccess' error must be returned. |
11
usmUserPublic |
OCTETSTR
Legal Lengths: 0 .. 32 | Create |
A publicly-readable value which can be written as part of the procedure for changing a user's secret authentication and/or privacy key, and later read to determine whether the change of the secret was effected. |
12
usmUserStorageType |
INTEGER
StorageType (ENUM list below) | Create |
Note: this object is based on the StorageType TEXTUAL-CONVENTION. The storage type for this conceptual row. Conceptual rows having the value 'permanent' must allow write-access at a minimum to: - usmUserAuthKeyChange, usmUserOwnAuthKeyChange and usmUserPublic for a user who employs authentication, and - usmUserPrivKeyChange, usmUserOwnPrivKeyChange and usmUserPublic for a user who employs privacy. Note that any user who employs authentication or privacy must allow its secret(s) to be updated and thus cannot be 'readOnly'. If an initial set operation tries to set the value to 'readOnly' for a user who employs authentication or privacy, then an 'inconsistentValue' error must be returned. Note that if the value has been previously set (implicit or explicit) to any value, then the rules as defined in the StorageType Textual Convention apply. It is an implementation issue to decide if a SET for a readOnly or permanent row is accepted at all. In some contexts this may make sense, in others it may not. If a SET for a readOnly or permanent row is not accepted at all, then a 'wrongValue' error must be returned. |
13
usmUserStatus |
INTEGER
RowStatus (ENUM list below) | Create |
Note: this object is based on the RowStatus TEXTUAL-CONVENTION. The status of this conceptual row. Until instances of all corresponding columns are appropriately configured, the value of the corresponding instance of the usmUserStatus column is 'notReady'. In particular, a newly created row for a user who employs authentication, cannot be made active until the corresponding usmUserCloneFrom and usmUserAuthKeyChange have been set. Further, a newly created row for a user who also employs privacy, cannot be made active until the usmUserPrivKeyChange has been set. The RowStatus TC [RFC2579] requires that this DESCRIPTION clause states under which circumstances other objects in this row can be modified: The value of this object has no effect on whether other objects in this conceptual row can be modified, except for usmUserOwnAuthKeyChange and usmUserOwnPrivKeyChange. For these 2 objects, the value of usmUserStatus MUST be active. |
SCALAR OBJECTS
TABLE OBJECTS |
These TEXTUAL-CONVENTIONS are used in other parts of the document above. They are SNMP's way of defining a datatype that is used repeatedly by other MIB objects. Any implementation implementing objects that use one of these definitions must follow its DESCRIPTION clause as well as the DESCRIPTION clause of the object itself.
Name | Type | Description | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
KeyChange | OCTETSTR | Every definition of an object with this syntax must identify a protocol P, a secret key K, and a hash algorithm H that produces output of L octets. The object's value is a manager-generated, partially-random value which, when modified, causes the value of the secret key K, to be modified via a one-way function. The value of an instance of this object is the concatenation of two components: first a 'random' component and then a 'delta' component. The lengths of the random and delta components are given by the corresponding value of the protocol P; if P requires K to be a fixed length, the length of both the random and delta components is that fixed length; if P allows the length of K to be variable up to a particular maximum length, the length of the random component is that maximum length and the length of the delta component is any length less than or equal to that maximum length. For example, usmHMACMD5AuthProtocol requires K to be a fixed length of 16 octets and L - of 16 octets. usmHMACSHAAuthProtocol requires K to be a fixed length of 20 octets and L - of 20 octets. Other protocols may define other sizes, as deemed appropriate. When a requester wants to change the old key K to a new key keyNew on a remote entity, the 'random' component is obtained from either a true random generator, or from a pseudorandom generator, and the 'delta' component is computed as follows: - a temporary variable is initialized to the existing value of K; - if the length of the keyNew is greater than L octets, then: - the random component is appended to the value of the temporary variable, and the result is input to the the hash algorithm H to produce a digest value, and the temporary variable is set to this digest value; - the value of the temporary variable is XOR-ed with the first (next) L-octets (16 octets in case of MD5) of the keyNew to produce the first (next) L-octets (16 octets in case of MD5) of the 'delta' component. - the above two steps are repeated until the unused portion of the keyNew component is L octets or less, - the random component is appended to the value of the temporary variable, and the result is input to the hash algorithm H to produce a digest value; - this digest value, truncated if necessary to be the same length as the unused portion of the keyNew, is XOR-ed with the unused portion of the keyNew to produce the (final portion of the) 'delta' component. For example, using MD5 as the hash algorithm H: iterations = (lenOfDelta - 1)/16; /* integer division */ temp = keyOld; for (i = 0; i < iterations; i++) { temp = MD5 (temp || random); delta[i*16 .. (i*16)+15] = temp XOR keyNew[i*16 .. (i*16)+15]; } temp = MD5 (temp || random); delta[i*16 .. lenOfDelta-1] = temp XOR keyNew[i*16 .. lenOfDelta-1]; The 'random' and 'delta' components are then concatenated as described above, and the resulting octet string is sent to the recipient as the new value of an instance of this object. At the receiver side, when an instance of this object is set to a new value, then a new value of K is computed as follows: - a temporary variable is initialized to the existing value of K; - if the length of the delta component is greater than L octets, then: - the random component is appended to the value of th | ||||||||||||||
TestAndIncr | INTEGER | Represents integer-valued information used for atomic operations. When the management protocol is used to specify that an object instance having this syntax is to be modified, the new value supplied via the management protocol must precisely match the value presently held by the instance. If not, the management protocol set operation fails with an error of `inconsistentValue'. Otherwise, if the current value is the maximum value of 2^31-1 (2147483647 decimal), then the value held by the instance is wrapped to zero; otherwise, the value held by the instance is incremented by one. (Note that regardless of whether the management protocol set operation succeeds, the variable- binding in the request and response PDUs are identical.) The value of the ACCESS clause for objects having this syntax is either `read-write' or `read-create'. When an instance of a columnar object having this syntax is created, any value may be supplied via the management protocol. When the network management portion of the system is re- initialized, the value of every object instance having this syntax must either be incremented from its value prior to the re-initialization, or (if the value prior to the re- initialization is unknown) be set to a pseudo-randomly generated value. | ||||||||||||||
AutonomousType | OBJECTID | Represents an independently extensible type identification value. It may, for example, indicate a particular sub-tree with further MIB definitions, or define a particular type of protocol or hardware. | ||||||||||||||
SnmpEngineID | OCTETSTR | An SNMP engine's administratively-unique identifier. Objects of this type are for identification, not for addressing, even though it is possible that an address may have been used in the generation of a specific value. The value for this object may not be all zeros or all 'ff'H or the empty (zero length) string. The initial value for this object may be configured via an operator console entry or via an algorithmic function. In the latter case, the following example algorithm is recommended. In cases where there are multiple engines on the same system, the use of this algorithm is NOT appropriate, as it would result in all of those engines ending up with the same ID value. 1) The very first bit is used to indicate how the rest of the data is composed. 0 - as defined by enterprise using former methods that existed before SNMPv3. See item 2 below. 1 - as defined by this architecture, see item 3 below. Note that this allows existing uses of the engineID (also known as AgentID [RFC1910]) to co-exist with any new uses. 2) The snmpEngineID has a length of 12 octets. The first four octets are set to the binary equivalent of the agent's SNMP management private enterprise number as assigned by the Internet Assigned Numbers Authority (IANA). For example, if Acme Networks has been assigned { enterprises 696 }, the first four octets would be assigned '000002b8'H. The remaining eight octets are determined via one or more enterprise-specific methods. Such methods must be designed so as to maximize the possibility that the value of this object will be unique in the agent's administrative domain. For example, it may be the IP address of the SNMP entity, or the MAC address of one of the interfaces, with each address suitably padded with random octets. If multiple methods are defined, then it is recommended that the first octet indicate the method being used and the remaining octets be a function of the method. 3) The length of the octet string varies. The first four octets are set to the binary equivalent of the agent's SNMP management private enterprise number as assigned by the Internet Assigned Numbers Authority (IANA). For example, if Acme Networks has been assigned { enterprises 696 }, the first four octets would be assigned '000002b8'H. The very first bit is set to 1. For example, the above value for Acme Networks now changes to be '800002b8'H. The fifth octet indicates how the rest (6th and following octets) are formatted. The values for the fifth octet are: 0 - reserved, unused. 1 - IPv4 address (4 octets) lowest non-special IP address 2 - IPv6 address (16 octets) lowest non-special IP address 3 - MAC address (6 octets) lowest IEEE MAC address, canonical order 4 - Text, administratively a | ||||||||||||||
StorageType | INTEGER
| Describes the memory realization of a conceptual row. A row which is volatile(2) is lost upon reboot. A row which is either nonVolatile(3), permanent(4) or readOnly(5), is backed up by stable storage. A row which is permanent(4) can be changed but not deleted. A row which is readOnly(5) cannot be changed nor deleted. If the value of an object with this syntax is either permanent(4) or readOnly(5), it cannot be written. Conversely, if the value is either other(1), volatile(2) or nonVolatile(3), it cannot be modified to be permanent(4) or readOnly(5). (All illegal modifications result in a 'wrongValue' error.) Every usage of this textual convention is required to specify the columnar objects which a permanent(4) row must at a minimum allow to be writable. | ||||||||||||||
RowPointer | OBJECTID | Represents a pointer to a conceptual row. The value is the name of the instance of the first accessible columnar object in the conceptual row. For example, ifIndex.3 would point to the 3rd row in the ifTable (note that if ifIndex were not-accessible, then ifDescr.3 would be used instead). | ||||||||||||||
RowStatus | INTEGER
| The RowStatus textual convention is used to manage the creation and deletion of conceptual rows, and is used as the value of the SYNTAX clause for the status column of a conceptual row (as described in Section 7.7.1 of [2].) The status column has six defined values: - `active', which indicates that the conceptual row is available for use by the managed device; - `notInService', which indicates that the conceptual row exists in the agent, but is unavailable for use by the managed device (see NOTE below); 'notInService' has no implication regarding the internal consistency of the row, availability of resources, or consistency with the current state of the managed device; - `notReady', which indicates that the conceptual row exists in the agent, but is missing information necessary in order to be available for use by the managed device (i.e., one or more required columns in the conceptual row have not been instanciated); - `createAndGo', which is supplied by a management station wishing to create a new instance of a conceptual row and to have its status automatically set to active, making it available for use by the managed device; - `createAndWait', which is supplied by a management station wishing to create a new instance of a conceptual row (but not make it available for use by the managed device); and, - `destroy', which is supplied by a management station wishing to delete all of the instances associated with an existing conceptual row. Whereas five of the six values (all except `notReady') may be specified in a management protocol set operation, only three values will be returned in response to a management protocol retrieval operation: `notReady', `notInService' or `active'. That is, when queried, an existing conceptual row has only three states: it is either available for use by the managed device (the status column has value `active'); it is not available for use by the managed device, though the agent has sufficient information to attempt to make it so (the status column has value `notInService'); or, it is not available for use by the managed device, and an attempt to make it so would fail because the agent has insufficient information (the state column has value `notReady'). NOTE WELL This textual convention may be used for a MIB table, irrespective of whether the values of that table's conceptual rows are able to be modified while it is active, or whether its conceptual rows must be taken out of service in order to be modified. That is, it is the responsibility of the DESCRIPTION clause of the status column to specify whether the status column must not be `active' in order for the value of some other column of the same conceptual row to be modified. If such a specification is made, affected columns may be changed by an SNMP set PDU if the RowStatus would not be equal to `active' either immediately before or after processing the PDU. In other words, if the PDU also contained a varbind that would change the RowStatus value, the column in question may be changed if the RowStatus was not equal to `active' as the PDU was received, or if the varbind sets the status | ||||||||||||||
SnmpAdminString | OCTETSTR | An octet string containing administrative information, preferably in human-readable form. To facilitate internationalization, this information is represented using the ISO/IEC IS 10646-1 character set, encoded as an octet string using the UTF-8 transformation format described in [RFC2279]. Since additional code points are added by amendments to the 10646 standard from time to time, implementations must be prepared to encounter any code point from 0x00000000 to 0x7fffffff. Byte sequences that do not correspond to the valid UTF-8 encoding of a code point or are outside this range are prohibited. The use of control codes should be avoided. When it is necessary to represent a newline, the control code sequence CR LF should be used. The use of leading or trailing white space should be avoided. For code points not directly supported by user interface hardware or software, an alternative means of entry and display, such as hexadecimal, may be provided. For information encoded in 7-bit US-ASCII, the UTF-8 encoding is identical to the US-ASCII encoding. UTF-8 may require multiple bytes to represent a single character / code point; thus the length of this object in octets may be different from the number of characters encoded. Similarly, size constraints refer to the number of encoded octets, not the number of characters represented by an encoding. Note that when this TC is used for an object that is used or envisioned to be used as an index, then a SIZE restriction MUST be specified so that the number of sub-identifiers for any object instance does not exceed the limit of 128, as defined by [RFC3416]. Note that the size of an SnmpAdminString object is measured in octets, not characters. |
Tree view generated by running: snmptranslate -Tp SNMP-USER-BASED-SM-MIB::snmpUsmMIB
+--snmpUsmMIB(15) | +--usmMIBObjects(1) | | | +--usmStats(1) | | | | | +-- -R-- Counter usmStatsUnsupportedSecLevels(1) | | +-- -R-- Counter usmStatsNotInTimeWindows(2) | | +-- -R-- Counter usmStatsUnknownUserNames(3) | | +-- -R-- Counter usmStatsUnknownEngineIDs(4) | | +-- -R-- Counter usmStatsWrongDigests(5) | | +-- -R-- Counter usmStatsDecryptionErrors(6) | | | +--usmUser(2) | | | +-- -RW- INTEGER usmUserSpinLock(1) | | Textual Convention: TestAndIncr | | Range: 0..2147483647 | | | +--usmUserTable(2) | | | +--usmUserEntry(1) | | Index: usmUserEngineID, usmUserName | | | +-- ---- String usmUserEngineID(1) | | Textual Convention: SnmpEngineID | | Size: 5..32 | +-- ---- String usmUserName(2) | | Textual Convention: SnmpAdminString | | Size: 1..32 | +-- -R-- String usmUserSecurityName(3) | | Textual Convention: SnmpAdminString | | Size: 0..255 | +-- CR-- ObjID usmUserCloneFrom(4) | | Textual Convention: RowPointer | +-- CR-- ObjID usmUserAuthProtocol(5) | | Textual Convention: AutonomousType | +-- CR-- String usmUserAuthKeyChange(6) | | Textual Convention: KeyChange | +-- CR-- String usmUserOwnAuthKeyChange(7) | | Textual Convention: KeyChange | +-- CR-- ObjID usmUserPrivProtocol(8) | | Textual Convention: AutonomousType | +-- CR-- String usmUserPrivKeyChange(9) | | Textual Convention: KeyChange | +-- CR-- String usmUserOwnPrivKeyChange(10) | | Textual Convention: KeyChange | +-- CR-- String usmUserPublic(11) | | Size: 0..32 | +-- CR-- EnumVal usmUserStorageType(12) | | Textual Convention: StorageType | | Values: other(1), volatile(2), nonVolatile(3), permanent(4), readOnly(5) | +-- CR-- EnumVal usmUserStatus(13) | Textual Convention: RowStatus | Values: active(1), notInService(2), notReady(3), createAndGo(4), createAndWait(5), destroy(6) | +--usmMIBConformance(2) | +--usmMIBCompliances(1) | | | +--usmMIBCompliance(1) | +--usmMIBGroups(2) | +--usmMIBBasicGroup(1)
Last modified: Wednesday, 01-Aug-2018 04:41:28 UTC
For questions regarding web content and site functionality, please write to the net-snmp-users mail list.